

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Synthesis, Magnetic and Spectral Properties of One-dimension Chain Adducts of $\text{Ni}(\text{Bu-dtp})_2$, NiQ_2 and $\text{Ni}(\text{TTA})_2$ with 4,4'-bipyridine. Crystal Structure of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$ (Bu-dtp=dibutyldithiophosphate, Q=8-quinolinol, TTA=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate, 4,4'-bipy=4,4'-bipyridine)

Ren-Gen Xiong^a; Zhi Yu^a; Jing-Lin Zuo^a; Xiao-Zeng You^a; Xiao-Ying Huang^b

^a Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, P. R. China ^b State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou, P. R. China

To cite this Article Xiong, Ren-Gen , Yu, Zhi , Zuo, Jing-Lin , You, Xiao-Zeng and Huang, Xiao-Ying(1997) 'Synthesis, Magnetic and Spectral Properties of One-dimension Chain Adducts of $\text{Ni}(\text{Bu-dtp})_2$, NiQ_2 and $\text{Ni}(\text{TTA})_2$ with 4,4'-bipyridine. Crystal Structure of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$ (Bu-dtp=dibutyldithiophosphate, Q=8-quinolinol, TTA=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate, 4,4'-bipy=4,4'-bipyridine)', Spectroscopy Letters, 30: 2, 403 – 413

To link to this Article: DOI: 10.1080/00387019708006997

URL: <http://dx.doi.org/10.1080/00387019708006997>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, Magnetic and Spectral Properties of One-dimension Chain Adducts of $\text{Ni}(\text{Bu-dtp})_2$, NiQ_2 and $\text{Ni}(\text{TTA})_2$ with 4,4'-bipyridine. Crystal Structure of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$ (Bu-dtp =dibutylthiophosphate, Q =8-quinolinol, TTA =4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate, $4,4'\text{-bipy}$ =4,4'-bipyridine)

Key words: Synthesis; Magnetism; Spectral properties; One-dimension; Chain and Adduct.

Ren-Gen Xiong, Zhi Yu, Jing-Lin Zuo and Xiao-Zeng You*

Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry,
Nanjing University, Nanjing, 210008, P. R. China

Xiao-Ying Huang

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of
Matter, Academia Sinica, Fuzhou, 350002, P. R. China

Abstract-Three one-dimension chain adducts, catena-poly-[bis(dibutylthiophosphato- $\text{K}^2\text{S},\text{S}$)nickel(II)- μ -(4,4'-bipyridine)-KN,KN], catena-poly{bis(8-quinolinolato- N^1,O^8)nickel(II)- μ -(4,4'-bipyridine)-KN,KN} and catena-poly{bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato- $\text{K}^2\text{O},\text{O}$)nickel(II)- μ -(4,4'-bipyridine)-KN,KN}, hereafter abbreviated to $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$, $[\text{4,4}'\text{-}(bipy)\text{-NiQ}_2]_n$ and $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{TTA})_2]_n$, have been synthesized and characterized by elemental analysis, IR, magnetic properties and X-ray photoelectron spectra(XPS). The crystal structure determination of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$ reveals that the local coordination geometry around nickel(II) is a distorted octahedron and the $\text{Ni}(\text{Bu-dtp})_2$ units are bridged by 4,4'-bipyridine to form an infinite chain. The Ni-S and Ni-N bond lengths are 2.468(6)-2.494(6) \AA and 2.10(2)-2.15(2) \AA , respectively.

*Author to whom correspondence should be addressed.

Introduction

The nickel(II) complexes of dialkyldithiophosphate(dtp), 8-quinolinol(Q) and 2-thienyltrifluoroacetone(TTA) are widely used as lubricating oil and rubber industry additives and a fire-resistant additive for olefin polymers as well as a fungicide for leather¹⁻⁴. Recently, their adducts with neutral nitrogen have also attracted broad attention due to their potential applications in petroleum industry⁵⁻⁷. Furthermore, one-dimension transition metal complexes bridged by bidentate π electron-containing ligands, such as pyrazine and 4,4'-bipyridine(bipy), have gained more importance owing to their potential utilization as organic conductors and magnetic materials⁸. To our knowledge, none of the adducts of $\text{Ni}(\text{Bu-dtp})_2$, NiQ_2 and $\text{Ni}(\text{TTA})_2$ with 4,4'-bipy has been reported in recent literature. We report here their IR, XPS and magnetic Properties as well as the X-ray crystal structure determination of $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{Bu-dtp})_2]_n$.

Experimental

Synthesis

1. $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{Bu-dtp})_2]_n$: Bis(O,O'-dibutyldithiophosphato) nickel(II)($\text{Ni}(\text{Bu-dtp})_2$) was prepared according to the literature method². 4,4'-Bipyridine(analytic grade) was directly used without further purification. $\text{Ni}(\text{Bu-dtp})_2$ (1mmol) was dissolved in EtOH and 4,4'-bipy was also dissolved in EtOH. The two solution were mixed, immediately giving green crystal precipitate. The crystal were collected by filtration, washed with EtOH and dried in vacuo; yield: 98%. Found: C: 44.81, H: 6.42, N: 4.12. Calcd. for $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{Bu-dtp})_2]_n$: C: 44.73, H: 6.31, N: 4.01. The green needles crystal suitable for X-ray structure analysis were recrystallized from toluene. The toluene solution containing $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{Bu-dtp})_2]_n$ evaporated at room temperature for a few weeks to give green needles crystals.

2. $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{NiQ}_2]_n$: Bis(8-quinolinolato-N¹,O⁸)nickel(II).2H₂O was prepared according to the literature method⁶. $\text{NiQ}_2\text{.2H}_2\text{O}$ (1mmol) was dissolved in EtOH and CHCl₃, and 4,4'-bipy was dissolved in EtOH. The two solution were mixed for 30 minutes and brown-yellow crystal precipitate appeared. The crystal were collected by filtration, washed with EtOH and dried in vacuo; yield :85%, found: C:66.56, H: 3.60, N: 11.56. Calcd. for $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{NiQ}_2]_n$: C:66.56, H: 3.98, N:11.14.

3. $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{TTA})_2]_n$: Bis(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato)nickel(II)($\text{Ni}(\text{TTA})_2$) was prepared according to the literature method⁷. The following procedure is very similar to that of $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{Bu-dtp})_2]_n$. The pale blue crystals were obtained after the mixture of $\text{Ni}(\text{TTA})_2$ and 4,4'-bipy. yield: 90%. Found: C:47.30, H:2.30, N:4.50. Calcd for $[\text{4,4}'\text{-}(\text{bipy})\text{-}\text{Ni}(\text{TTA})_2]_n$: C:47.50, H:2.43, N:4.26.

Physical measurements

Elemental analysis for carbon, hydrogen and nitrogen were performed on a Perkin-Elmer 240C analyser. The infrared spectra from 4000 to 400 cm^{-1} and far-infrared spectra from 500 to 100 cm^{-1} in polyethylene pellets were obtained with a Nicolet 170SX FT-IR spectrophotometer. Magnetic measurement were carried out on a CHAN-2000 Faraday balance with $\text{Ni}(\text{en})_3\text{S}_2\text{O}_3$ as a standard at 6000G magnetic field. The resulting susceptibility was corrected for underlying diamagnetism. X-ray photoelectron spectroscopy (XPS) spectra were recorded with a VG ESCALAB MK-II spectrometer using $\text{Mg K}\alpha$ exciting irradiation. Samples were in powder form on double-sided sticky tape on a double-side silicon metal sample holder. Core level binding energy was measured for Ni, S, P, F, O and N atoms in the sample. Calibration was made using C_{1s} binding Energy 284.3eV.

X-ray Structure Determination

A single crystal with the dimension $1.4 \times 0.1 \times 0.06$ mm was selected for X-ray diffraction analysis. Diffraction were collected on an Enraf-Nonius CAD-4 diffractometer using graphite monochromated $\text{Mo-K}\alpha$ ($\lambda = 0.71069 \text{\AA}$) radiation. Crystal data for $[4, 4'-(\text{bipy})\text{-Ni}(\text{dtp})_2]_n$: $\text{C}_{26}\text{H}_{44}\text{NiP}_2\text{N}_2\text{S}_4\text{O}_4$, $M_r = 697.53$, triclinic space group $\text{P}1$ (No. 2), $a = 13.600(4)$, $b = 16.893(6)$, $c = 8.310(2) \text{\AA}$, $\alpha = 97.42(3)$, $\beta = 103.66(2)$, $\gamma = 105.18(2)^\circ$, $V = 1753(1) \text{\AA}^3$, $Z = 2$, $\mu = 9.04 \text{ cm}^{-1}$, $d_c = 1.32 \text{ g cm}^{-3}$, $R = 0.073$, $R_w = 0.079$. A total of 6446 reflections were collected, of which 6161 were unique and 1276 with $I \geq 3\sigma(I)$ were used in the refinement. The structure was solved by direct methods using MITHRIL.⁹ The heavy atom Ni was located in an E map and the remaining non-H atoms were located using the DIRIDIF program.¹⁰ H atoms were placed in geometrically calculated positions with C-H bond length of 0.95\AA , but were not included in the refinement. The structure was refined by full-matrix least-squares based on F with weights $w = 1/\sigma^2(F)$ and with anisotropic displacement parameters for all atoms. Data collection was obtained using CONTROL software.¹¹ All calculations were performed on a VAX3100 computer using the TEXSAN program package.¹² The selected bond lengths and angles are listed in Table 1 and 2, respectively. Table 3 includes fractional atomic coordinates and equivaklent isotropic displacement paraments in $[4, 4'-(\text{bipy})\text{-Ni}(\text{dtp})_2]_n$. Molecular structure showing 30% probability displacement ellipsoids and unit cell packing diagram is depicted in Fig. 1 and Fig. 2.

Supplementary material

Tables containing the atomic coordinates, anisotropic displacement coefficients, calculated H atom coordinates, and calculated and observed structure factors (F_c and F_o) have been deposited to the Editor. The information is available on request from our laboratory.

Table 1 Selected bond lengths (Å) in [4,4'-(bipy)-Ni(Bu-dtp)₂]_n

Ni(1)-N(1)	2.10(2)	Ni(1)-N(1a)	2.10(2)
Ni(2)-N(2)	2.15(2)	Ni(2)-N(2b)	2.15(2)
Ni(1)-S(1)	2.468(6)	Ni(1)-S(1a)	2.468(2)
Ni(1)-S(2)	2.494(6)	Ni(1)-S(2a)	2.494(2)
Ni(2)-S(3)	2.471(7)	Ni(2)-S(3b)	2.471(7)
Ni(2)-S(4)	2.478(7)	Ni(2)-S(4b)	2.478(7)
P(1)-S(1)	1.98(1)	P(1)-S(2)	2.00(1)
P(2)-S(3)	1.96(1)	P(2)-S(4)	1.96(1)
P(1)-O(1)	1.56(1)	P(1)-O(2)	1.59(2)
P(2)-O(3)	1.62(2)	P(2)-O(4)	1.66(2)
O(1)-C(31)	1.51(3)	O(2)-C(21)	1.52(3)
O(3)-C(51)	1.06(6)	O(4)-C(41)	1.14(7)

Table 2 Selected bond angles (°) in [4,4'-(bipy)-Ni(Bu-dtp)₂]_n

N(1)-Ni(1)-N(1a)	180(3)	N(2)-Ni(2)-N(2b)	180(8)
S(1)-Ni(1)-S(2)	82.0(2)	S(3)-Ni(2)-S(4)	82.4(3)
N(1)-Ni(1)-S(1)	90.2(5)	N(1)-Ni(1)-S(2)	90.9(5)
N(1)-Ni(1)-S(1a)	89.8(5)	N(1)-Ni(1)-S(2a)	89.1(5)
N(2)-Ni(2)-S(3)	90.6(5)	N(2)-Ni(2)-S(4)	89.3(6)
N(2)-Ni(2)-S(3b)	89.4(5)	N(2)-Ni(2)-S(4b)	90.7(6)
S(1)-P(1)-S(2)	109.8(4)	O(1)-P(1)-O(2)	94(1)
S(1)-P(1)-O(2)	112.4(8)	S(2)-P(1)-O(1)	112.4(7)
S(3)-P(2)-S(4)	112.4(6)	O(3)-P(2)-O(4)	92(2)
S(3)-P(2)-O(3)	112(1)	S(4)-P(2)-O(4)	112(1)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters in [4,4'-(bipy)-Ni(dtpp)₂]_n.

atom	x	y	z	B(eq)(Å ²)
Ni(1)	1/2	1/2	1/2	3.3(2)
Ni(2)	0	0	1.0000	4.4(2)
S(1)	0.4107(5)	0.4422(4)	0.1963(7)	4.3(3)
S(2)	0.3761(5)	0.5862(4)	0.4587(8)	4.7(3)
S(3)	-0.1745(6)	-0.0204(5)	0.7982(9)	6.9(3)
S(4)	-0.0543(6)	0.1055(4)	1.1650(9)	6.5(3)
P(1)	0.3268(6)	0.5204(4)	0.2212(8)	5.0(3)
P(2)	-0.1843(8)	0.0637(6)	0.975(1)	7.8(4)
O(1)	0.328(1)	0.578(1)	0.088(2)	6.9(8)
O(2)	0.202(1)	0.475(1)	0.152(2)	7.1(8)
O(3)	-0.292(2)	0.033(2)	1.032(3)	15(2)
O(4)	-0.221(2)	0.141(2)	0.901(4)	15(2)
N(1)	0.388(1)	0.407(1)	0.562(2)	3.3(8)
N(2)	0.074(2)	0.096(1)	0.882(2)	4.5(8)
C(1)	0.340(2)	0.426(1)	0.680(3)	5(1)
C(2)	0.273(2)	0.368(2)	0.737(2)	3(1)
C(3)	0.246(2)	0.282(2)	0.669(3)	5(1)
C(4)	0.289(2)	0.266(1)	0.540(3)	5(1)
C(5)	0.356(2)	0.324(2)	0.487(3)	6(1)
C(6)	0.183(2)	0.219(1)	0.744(3)	4(1)
C(7)	0.117(2)	0.143(2)	0.642(3)	6(1)
C(8)	0.062(2)	0.086(1)	0.719(3)	5(1)
C(9)	0.137(2)	0.167(2)	0.982(2)	4(1)
C(10)	0.193(2)	0.229(1)	0.914(3)	5(1)
C(21)	0.150(3)	0.411(2)	0.244(4)	8.9(9)
C(22)	0.031(4)	0.387(3)	0.182(5)	17(2)
C(23)	0.008(6)	0.464(5)	0.25(1)	29(3)
C(24)	-0.103(6)	0.440(4)	0.238(8)	28(3)
C(31)	0.431(2)	0.638(2)	0.085(3)	6.5(7)
C(32)	0.401(2)	0.681(1)	-0.061(3)	6.3(6)
C(33)	0.499(2)	0.741(2)	-0.070(3)	9.4(9)
C(34)	0.482(2)	0.798(2)	-0.203(4)	10(1)
C(41)	-0.163(6)	0.185(5)	0.85(1)	27(4)
C(42)	-0.209(4)	0.221(3)	0.705(7)	20(2)
C(43)	-0.127(8)	0.288(6)	0.65(1)	32(4)
C(44)	-0.137(7)	0.257(6)	0.51(1)	35(5)
C(51)	-0.302(6)	0.011(4)	1.143(9)	25(3)
C(52)	-0.386(3)	-0.002(3)	1.226(5)	15(1)
C(53)	-0.385(4)	-0.063(3)	1.334(6)	19(2)
C(54)	-0.469(4)	-0.098(3)	1.384(6)	20(2)

$$B_{eq} = (8\pi^2/3) \sum_i \sum_j U_i a_i^* a_j^* \mathbf{u}_i \cdot \mathbf{u}_j$$

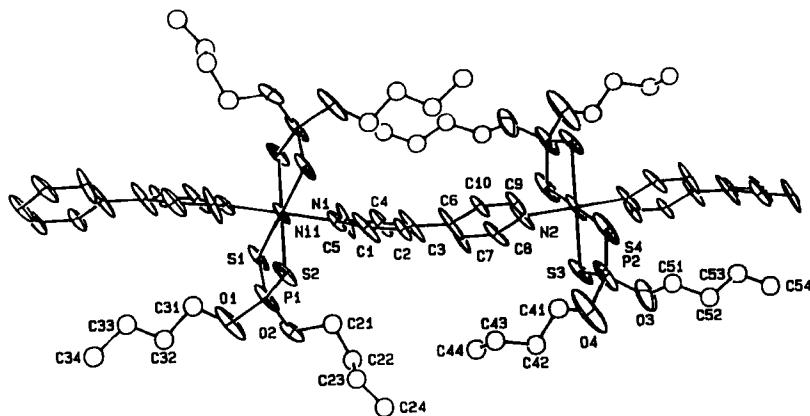


Fig. 1 Molecular structure of $[4,4'-(\text{bipy})-\text{Ni}(\text{Bu-dtp})_2]_n$ showing 30% probability displacement ellipsoids. H atoms are omitted for clarity

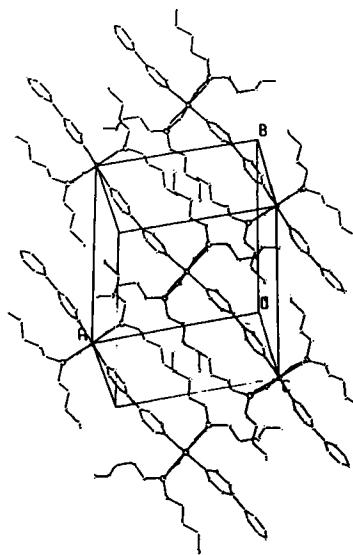


Fig. 2 Perspective view of the unit cell of $[4,4'-(\text{bipy})-\text{Ni}(\text{Bu-dtp})_2]_n$

Results and Discussion

Spectral features

The results of elemental analysis, IR and far-IR as well as XPS have indicated that the reaction of $\text{Ni}(\text{DTP})_2$, NiQ_2 and $\text{Ni}(\text{TTA})_2$ with 4,4'-bipyridine yielded the corresponding adducts. IR spectra (see Fig. 3) of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$ exhibits diagnostic absorption bands of $\text{Ni}(\text{dtp})_2$, such as ν_{sym} (Ni-S) (361 cm^{-1}), ν_{antisym} (Ni-S) (325 cm^{-1}), ν_{antisym} (P-S) (658 cm^{-1}), ν_{sym} (P-S) (551 cm^{-1}) and ν_{sym} (P-O) (1027 cm^{-1} , sh) as well as ν_{antisym} (P-O) (970 cm^{-1}), which are consistent with those reported in reference 2. In addition, a strong absorption band with a should peak at 233 cm^{-1} and 246 cm^{-1} , respectively are found¹³, which may be attributed to the symmetric and antisymmetric Ni-N stretching frequencies, indicating that 4,4'-bipyridine has coordinated to Ni atom, which is confirmed by the results of crystal structure determination as mentioned later. In far-IR spectra of $[\text{4,4}'\text{-}(bipy)\text{-NiQ}_2]_n$ (see Fig. 3), three strong absorption which are assigned to $\nu_{\text{Ni-N}}(228\text{ cm}^{-1})$, $\nu_{\text{Ni-O}}(300\text{ cm}^{-1})$ and ring deformation (388 cm^{-1}) were observed, in agreement with trans-bis(8-quinolinolato)nickel(II)dihydrates but quite different from tetrahedral NiQ_2 , indicating that the adduct may be an octahedral geometry. In addition, the absorption bands at $3046\text{(w)}, 1600\text{(m)}, 1570\text{(m)}, 1496\text{(s)}, 1462\text{(s)}, 1363\text{(s)}, 1324\text{(s)}, 1211\text{(m)}$ and 1109(m) cm^{-1} were also observed.

Furthermore, in far-IR spectra of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{TTA})_2]_n$ (see Fig. 3), a strong absorption band at 260 cm^{-1} with a should peak (220 cm^{-1}) and a medium band at 310 cm^{-1} with should peak (330 cm^{-1}) may be attributed to the symmetric and antisymmetric stretching mode of Ni-N and Ni-O. A ring deformation vibration mode at 393 cm^{-1} was also observed. These characteristic absorption bands are very similar to those of trans- $\text{Ni}(\text{TTA})_2\text{(3mpy)}_2$.³ Over the range $800\text{-}3200\text{ cm}^{-1}$, the absorption bands at 3074(w) , 1604(s) , 1536(s) , 1413(s) , 1353(m) , 1303(s) , 1231(m) , 1160(s) , 1133(s) , 944(m) , 860(m) and 820(m) cm^{-1} were found.

It is very interesting to note that in the three adducts, the $\text{Ni}2\text{p}$ satellites appear very similar (see Fig.4), indicating directly that they have the similar octahedral stereochemistry⁶, because the satellites are separated from the corresponding main line by 4-7 eV, i.e., the metal ions in an octahedral field, the shape-up satellite structure in 2p photoelectron spectra of the transition metal ions should fall in 5-10 eV. It should be pointed out that the other elemental binding energies are unexceptional.

Magnetic property

The room temperature magnetic moments of $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{Bu-dtp})_2]_n$, $[\text{4,4}'\text{-}(bipy)\text{-NiQ}_2]_n$ and $[\text{4,4}'\text{-}(bipy)\text{-Ni}(\text{TTA})_2]_n$ are 3.16 , 3.56 and 2.86 B.M. respectively, in good agreement with the

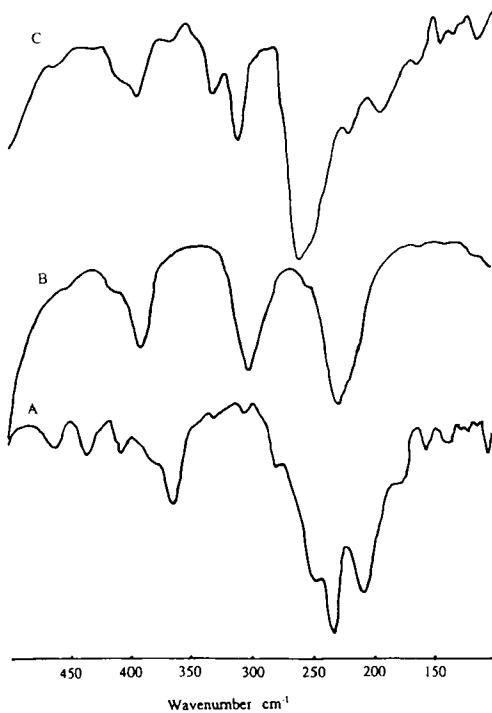


Fig. 3 Far-IR. diagram of $[4,4'-(\text{bipy})\text{-Ni}(\text{Bu-dtp})_2]_n$ $[4,4'-(\text{bipy})\text{-NiQ}_2]_n$ and $[4,4'-(\text{bipy})\text{-Ni}(\text{TTA})_2]_n$

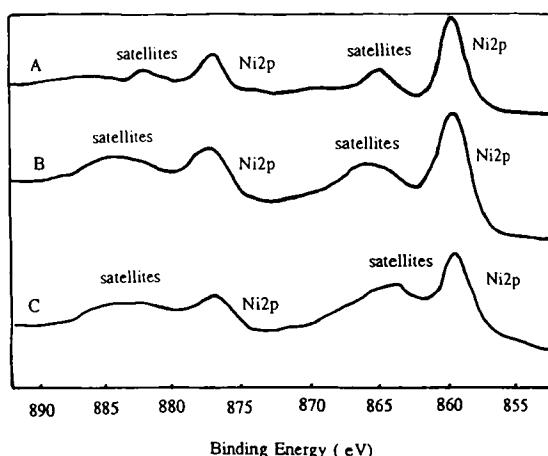


Fig. 4 Typical XPS spectra of the cores levels in the $[4,4'-(\text{bipy})\text{-Ni}(\text{Bu-dtp})_2]_n$, $[4,4'-(\text{bipy})\text{-NiQ}_2]_n$ and $[4,4'-(\text{bipy})\text{-Ni}(\text{TTA})_2]_n$

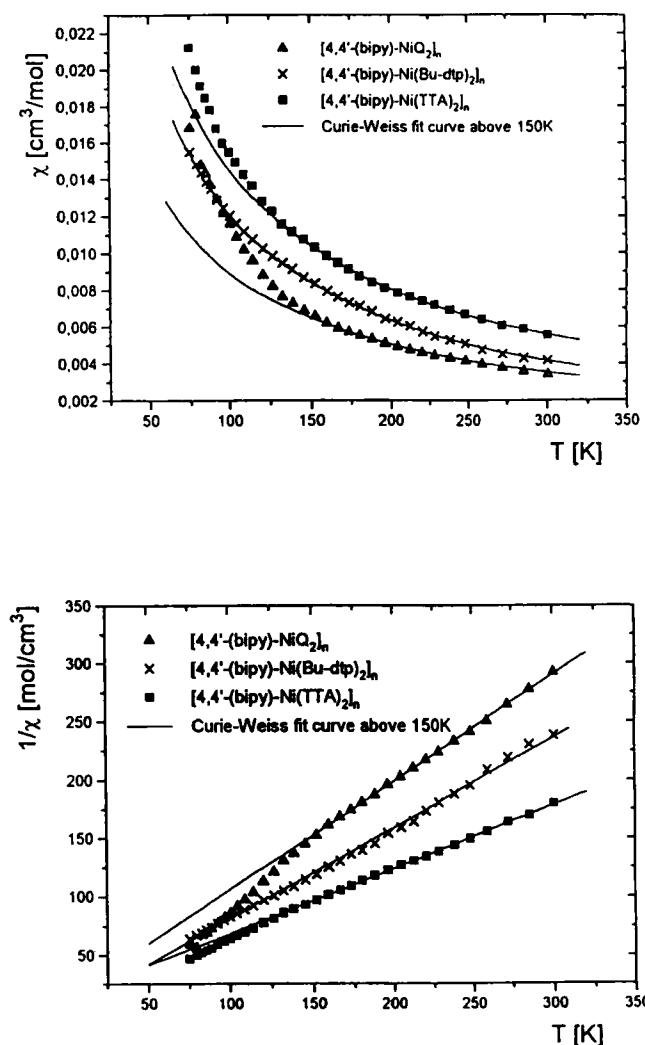


Fig. 5 Inverse molar susceptibility vs temperature for $[4,4'-(\text{bipy})-\text{Ni}(\text{Bu-dtp})_2]_n$, $[4,4'-(\text{bipy})-\text{NiQ}_2]_n$ and $[4,4'-(\text{bipy})-\text{Ni}(\text{TTA})_2]_n$, in the range 75 to 300K

range normally found for the octahedral nickel (II) complex. The magnetic susceptibility of the adducts as a function of temperature is shown in Fig. 5. The straight line is a least-squares fit to the data over the range 300-150K. The magnetic behavior of the $[4,4'-(bipy)-Ni(Bu-dtp)_2]_n$ ($c=1.203$), $[4,4'-(bipy)-NiQ_2]_n$ ($c=1.258$) and $[4,4'-(bipy)-Ni(TTA)_2]_n$ ($c=1.820$) obeys the Curie-Weiss Law with $X_m=C/(T-\theta)$. The θ values of $[4,4'-(bipy)-Ni(Bu-dtp)_2]_n$, and $[4,4'-(bipy)-Ni(TTA)_2]_n$ are -32K and -25K, suggesting that in the temperature range 150-300K, the magnetic behavior of the two adducts exhibits weak antiferromagnetic exchange interaction. Similarly, mononuclear adducts of $NiA_2\cdot 2rpic$ and $NiC_2\cdot 2rpic$ also display weak antiferromagnetic interaction in the range 14 to 295K¹⁵. However, the θ value of $[4,4'-(bipy)-NiQ_2]_n$ is 10.6K, indicating that its magnetic behavior exhibits weak ferromagnetic exchange interaction, probably due to the presence of the better conjugation effect between 4,4'-bipy ring and metal chelating ring⁶.

Crystal structure

The local coordination geometry around the nickel (II) ion is distorted octahedral configuration, in which $Ni(Bu-dtp)_2$ units are linked by 4,4'-bipyridine in a straight fashion with a N(1)-Ni-N(2) angles of 180(3) $^{\circ}$ to form an infinite chain in the crystal. Two of the these chains pass through a cell in a nearly parallel fashion.

The average Ni-S bond length (2.478 Å) is shorter than those found in the related adducts of $Ni(Bu-dtp)_2$ with nitrogen bases, such as octahedral $Ni[(dtp)_2\cdot 2Py]$, Ni-S (2.50 Å)¹⁶ and trans-octahedral configuration $Ni[(dtp)_2\cdot 2Q]$, Ni-S (2.513 Å),⁵ where Ni-N (2.13 Å) is in good agreement with those of $Ni[(dtp)_2\cdot 2Py]$ (2.11 Å) and $Ni[(Bu-dtp)_2\cdot 2APy]$ (2.091(2) Å).² (Q=isoquinoline, Apy=4-aminopyridine). On the other hand, the bond angles of S(1)-Ni-S(2) (82.0(2) $^{\circ}$) and S(3)-Ni-S(4) (82.4(3) $^{\circ}$) are somewhat larger than those of $Ni(Bu-dtp)_2\cdot 2Im$ (79.44(4) $^{\circ}$)¹⁷ and $Ni(Bu-dtp)_2\cdot 2Py$ (81.51(5) $^{\circ}$)¹⁸ (Im=imidazole). It is worthwhile noting that the dihedral angle between the plane of N(1) C(1) C(2) C(3) C(4) C(5) and C(6) C(7) C(8) C(9) C(10) N(2) is quite large (37.52 $^{\circ}$), showing that the conjugation effects between the two planes may be very weak, leading to the π electron transfer very difficulty. Due to this respect, the magnetic behavior of the title complex may exhibit weak magnetic exchange coupling, which is consistent with the result observed in this work.

Acknowledgement

The work was financially supported by a grant for a Key Research Project from the State Science and Technology Commission of China and State Key Laboratory of Tribology of Tsinghua University.

Reference

1. R-G Xiong, J-L.Zuo, J-X.Dong, Y.Chen, X-Z. You and Y-F.Zhu, *Tribology International*, 1996, **20**, 137.
2. X-Z. You, R-G. Xiong, J-X. Dong and X-Y. Huang, *Polyhedron*, 1994, **13**, 2763.
3. R-G. Xiong, X-Z. You, J-X. Dong and X-Y. Huang, *Acta Cryst.* 1995, **C51**, 835.
4. L. Uma and V. S. Krishnamurthi, *Leather Sci.*, 1984, **31**, 15.
5. Xiao-Yin Huang, Ren-Gen Xiong, Jun-Xiu Dong and Xiao-Zeng You, *Acta Cryst.*, 1995, **C51**, 598.
6. R-G. Xiong, J-L. Zuo, X-Z. You, Q-J. Wu and X-Y. Huang, *Trans. Metal Chem.*, 1995, **20**, 498; R. -G. Xiong, X. -Z. You , Q. -J. Wu and X. -Y. Huang, *Acta Cryst.* 1995, **C51**, 1978; S. -B. Song, R. -G. Xiong, X. -Z. You and X. -Y. Huang, *Acta Cryst.* 1995, **C51**, 2258.
7. R-G. Xiong, X-Z. You and X-Y. Huang, *Acta Cryst.* 1995, **C51**, 2260..
8. M-X. Li, Z. Xu, X-Z. You Z-C. Dong, G-C. Guo, *Polyhedron*, 1993, **12**, 921 .
9. C. T. Gilmore, MITHRIL, 1983, *Compute Program for the Automatic Solution of Crystal Structure for X-ray Data*, Department of Chemistry, Univ. of Glasgow, Scotland.
10. N. Walker and D. Stuart, *Acta Cryst.*, 1983, **A39**, 158 .
11. Molecular Structure Corporation, CONTROL, 1986, *An Automation Package for Rigaku AFC Single Crystal Diffractometers* (revised, 1988), MSC, 3200 Research Forest Drive, The Woodlands, TX77391, USA.
12. Molecular Structure Corporation, TEXSAN, 1985, TEXRAY Structure Analysis Package, MSC, 3200 Research Forest Drive, The Woodlands, TX77391, USA
13. C. Engelter, G. E. Jackson, C. L. Knight and D. A. Thornton, *J. Mol. Struct.*, 1989, **213**, 133
14. S. P. Roe, J. O. Hill, J. Liesegang and A. R. Lee, *J. Electron Spectrosc. Relat. Phenom.*, 1985, **35**, 131.
15. C. R. Bhasin, G. Srivastava and R. C. Mehrotra, *Inorg. Chim. Acta*, 1987, **128**, 69; R. -G. Xiong, C. -M. Liu, Z. Yu and X. -Z. Yuo, Submitted for *Inorg. Chim. Acta*.
16. S. Ooi and Q. Fernando, *Inorg. Chem.*, 1967, **6**, 1558; R. -G. Xiong, X. -Z. You and X. -Y. Huang, *Acta Cryst.* 1995, **C51**, 2263.
17. Jin-Shun Huang, Yun-Peng Yu, Zheng Xu and Xiao-Zeng You, *Acta Cryst.*, 1990, **C46**, 991.
18. Shi-Xiong Liu, Chi-Chang Lin, Zheng Xu, Yun-Peng Yu and Xiao-Zeng You, *Chin. J. Org. Chem.*, 1987, 369 .

Received: April 8, 1996
Accepted: June 3, 1996